A Brief Overview of Deep Learning


What is learning? Learning is the problem of finding a setting of the neural network’s weights that achieves the best possible results on our training data. In other words, we want to “push” the information from the labelled data into the parameters so that the resulting neural network will solve our problem.

The success of Deep Learning hinges on a very fortunate fact: that well-tuned and carefully-initialized stochastic gradient descent (SGD) can train LDNNs on problems that occur in practice. It is not a trivial fact since the training error of a neural network as a function of its weights is highly non-convex. And when it comes to non-convex optimization, we were taught that all bets are off. Only convex is good, and non-convex is bad. And yet, somehow, SGD seems to be very good at training those large deep neural networks on the tasks that we care about. The problem of training neural networks is NP-hard, and in fact there exists a family of datasets such that the problem of finding the best neural network with three hidden units is NP-hard. And yet, SGD just solves it in practice. This is the main pillar of deep learning.